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ABSTRACT We have studied the diffusion of tracer proteins in highly concentrated random-coil polymer and globular protein
solutions imitating the crowded conditions encountered in cellular environments. Using fluorescence correlation spectroscopy,
we measured the anomalous diffusion exponent a characterizing the dependence of the mean-square displacement of the
tracer proteins on time, Ær2(t)æ ; ta. We observed that the diffusion of proteins in dextran solutions with concentrations up to 400
g/l is subdiffusive (a , 1) even at low obstacle concentration. The anomalous diffusion exponent a decreases continuously with
increasing obstacle concentration and molecular weight, but does not depend on buffer ionic strength, and neither does it
depend strongly on solution temperature. At very high random-coil polymer concentrations, a reaches a limit value of al � 3/4,
which we take to be the signature of a coupling between the motions of the tracer proteins and the segments of the dextran
chains. A similar, although less pronounced, subdiffusive behavior is observed for the diffusion of streptavidin in concentrated
globular protein solutions. These observations indicate that protein diffusion in the cell cytoplasm and nucleus should be
anomalous as well, with consequences for measurements of solute diffusion coefficients in cells and for the modeling of cellular
processes relying on diffusion.

INTRODUCTION

A detailed understanding of the diffusion of proteins in

solutions containing high concentrations of soluble macro-

molecules is presently lacking. However, such an under-

standing is needed to correctly model passive intracellular

transport, a process likely to regulate important cellular

functions such as signal transduction (1,2), self-assembly of

supramolecular structures (3), gene transcription (4), kinetics

of reaction (5), embryogenesis (6), or regulation of cell

polarization (7). This understanding would also be beneficial

to several important fields of studies across disciplines. In the

fields of physical chemistry of solutions and polymer phys-

ics, it would facilitate the resolution of long-standing funda-

mental questions such as the clarification of the mechanisms

that govern the dynamics of single chains in polymer

solutions and the determination of the relationship between

the macroscopic and microscopic viscosities of these solu-

tions (8–10). In pharmaceutical research, it would permit the

improvement of drug delivery systems relying on the slow

release of drugs from polymer matrices (11,12).

Molecular crowding affects solute diffusion by increasing

the effective viscosity of the medium (13). It is also known to

cause depletion interactions, which tend to segregate macro-

molecules according to their size due to the increase in free

volume accessible to the solutes upon segregation (14) and to

affect the rates of chemical reactions taking place in solution

(13,15). In cells, for example, it is thought to influence not

only protein and nucleic acid diffusion, but also molecular

recognition (16), protein assembly (17), and protein folding

(9,18). However, despite its crucial importance, diffusion in

crowded environments remains a challenge to study and

predict. Even in simple model systems such as concentrated

polymer solutions none of the many models proposed can

fully describe the body of experimental evidence available

(8,19). In this article, we investigate the nature of diffusion in

crowded globular protein and random-coil polymer solutions

that we take as a model system for diffusion in the intra-

cellular environment, and show that protein diffusion

strongly deviates from simple diffusion in these systems.

ANOMALOUS DIFFUSION

The description of the diffusion of a solute in a continuous

medium is usually based on Fick’s law, which defines the

diffusion coefficient,D, of the solute in the media. Combined

with conservation of matter, Fick’s law leads to the diffusion

equation, whose solution yields the usual expression for the

mean-square displacement of a diffusing particle in three

dimensions:

Ær2ðtÞæ ¼ 6Dt; (1)

which is characteristic of simple diffusion. The dependence

of D on the diffusing particle’s hydrodynamic radius and on

the solvent viscosity is captured in the Stokes-Einstein equa-

tion. However, whereas Fick’s law is an established phenom-

enological law for diffusion in isotropic fluids, there is no

physical reason why it should always apply to more complex

systems (20). More generally, in complex media, one might

expect the mean-square displacement to obey a power law:

Ær2ðtÞæ ¼ 6G ta; (2)Submitted August 10, 2004, and accepted for publication August 3, 2005.

Address reprint requests to Cécile Fradin, E-mail: fradin@physics.

mcmaster.ca.

� 2005 by the Biophysical Society

0006-3495/05/11/2960/12 $2.00 doi: 10.1529/biophysj.104.051078

2960 Biophysical Journal Volume 89 November 2005 2960–2971



where G is a constant that does not depend on time. If the

exponent a is different from 1, then the diffusion is said to be

anomalous, and if a , 1 it is said to be subdiffusive. The

quantity Ær2æ/6t may still be defined as the apparent diffusion

coefficient D(t), but it will depend on the timescale, or

equivalently on the length scale of the measurements:

DðtÞ ¼ Gt
a�1

: (3)

In fractal media, where there is no characteristic length

scale, true anomalous diffusion is expected at all scales

(21,22). Many physical systems, however, possess a charac-

teristic length scale j, or a range of characteristic length

scales. For example, in crowded solutions j is determined by

various parameters such as the size of the solutes and the

range of the pair correlation function (23). In general, when

Ær2æ � j2 diffusion should be simple and correspond to

diffusion in the fluid without obstacles. When Ær2æ � j2

diffusion should also be simple but correspond to diffusion

in the composite medium. But when Ær2æ � j2, diffusion has

to be anomalous to bridge these two regimes (24). This

simple phenomenological argument does not predict pure

anomalous diffusion, but just subdiffusion over an inter-

mediary range of timescales. This type of crossover effect is

well illustrated in Monte Carlo simulations of diffusion in the

presence of immobile point obstacles (25).

ANOMALOUS DIFFUSION IN CELLS

Although observations of anomalous protein diffusion in

cells have been reported (26–29), in the majority of studies to

date, three-dimensional (3-D) cellular diffusion has been

assumed to be simple. One reason for this is that, whereas

two-dimensional membrane diffusion has been clearly

shown to be anomalous (24,30,31), a fact sometimes attrib-

uted to corralling effects or to interactions with immobile

membrane proteins acting as fixed obstacles, in the cyto-

plasm or the nucleus the case for anomalous diffusion of

proteins is not easy to demonstrate, because diffusing pro-

teins are too fast to be easily followed by single-particle

tracking. With other experimental methods such as fluores-

cence recovery after photobleaching and fluorescence cor-

relation spectroscopy (FCS), many artifacts have to be

accounted for before the conclusion can be made that dif-

fusion is anomalous, including: fluorophore blinking (29,32),

reversible photobleaching (33), restriction of diffusion by

membranes (34,35), and division of the population of tracers

in several subspecies with different diffusion coefficients (29).

As well, in our experience the aspect ratio of the experimental

detection volume must be very accurately determined if one

wants to study deviations from simple diffusion with FCS,

because using an artificially high value of that parameter may

conceal the real anomality of the diffusion if a . 0.9. In one

of the rare studies that considered anomalous diffusion of

proteins inside cells, anomalous exponents in the range 0.7–1

were found, depending on the position within the cell (far

from membranes), with smaller exponents consistently found

in the nucleus (29). However, the authors showed that the data

could be analyzed as well using a two-component model. In

another study considering the anomalous diffusion of dextran

polymers inside HeLa cells, anomalous exponents ranged

from 0.7 to 0.9 (27). However, most of the evidence for 3-D

anomalous protein diffusion in cells is in fact indirect.

Groups that have studied diffusion in cells report widely

disparate data: the diffusion coefficients of tracer particles in

cells are found to lie anywhere between 0 and 80% of their

value in aqueous solution (29,33,36–43), reflecting the fact

that the observed reduction in mobility depends on many

variables. A tracer’s mobility depends on which cell type (41),

on which cell (33), but also on which position inside the cell

(29) is selected for the study. The relative mobility of a tracer

in a cell compared to an aqueous solution, Dcell/Daq, has been

shown to decrease with increasing size of the diffusing

particles (37–39), which is an indirect indication that simple

diffusion models may not apply and that diffusion might be

anomalous. Possible interactions of the tracer particle with its

environment also play a role (44). Finally, it seems that results

might depend on the technique used (41), another possible

indication that analysis of experimental data based on a simple

diffusion model is misleading. A timescale-dependent D(t)
may explain some of the disparate data.

In this article, we report our studies as to whether the

diffusion of proteins in the presence of molecular crowding

due to other solutes is anomalous, a possibility that had not

yet been investigated experimentally. We chose to focus on

model systems where molecular crowding is provided by

controlled concentrations of inert random-coil polymer mole-

cules or globular proteins, thus reproducing the crowded

conditions present in cells while reducing the risk of mis-

interpreting the experimental data. We used FCS to extract

the anomalous diffusion exponent a corresponding to the

diffusion of the proteins. The length scale of FCS measure-

ments is set by the 0.5-mm diameter confocal detection

volume and is relevant to the length scale of diffusion in the

intracellular medium.

MATERIALS AND METHODS

Tracer particles and obstacles

Our samples were composed of a small concentration (typically 20 nM) of

fluorescent tracer particles diffusing in an aqueous buffer (phosphate buffered

saline (PBS)) in which obstacles were dissolved at a concentration up to 400 g/

l. We used Dulbecco’s PBS without magnesium and calcium: 137 mM NaCl,

15 mM Na2HPO4, 2.7 mM KCl, 1.5 mM KH2PO4, pH 7.4. The molecules

used as obstacles were bovine serum albumin ((BSA) 66 kDa, Bioshop,

Burlington, Ontario, Canada), streptavidin (52.8 kDa, Sigma-Aldrich, St

Louis, MO), and dextrans (also from Sigma-Aldrich). The peak molecular

weight valuesMp, and polydispersity indices (Mn/Mw) of the dextrans used, as

well as their approximate radii of gyration (Rg) and approximate overlap

volume fractions (f*) in aqueous solution are shown in Table 1. The

molecular weight values are reported as given by the supplier, and the values
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of Rg were estimated from the molecular weight data using an experimental

relationship from the literature (45). The values of f* were calculated

following an approximate method (Schaefer, 1984) that divides the volume

occupied by the monomers of a chain by an approximate expression for the

pervaded volume of a chain: f� ¼ ðMpx=NAÞ=ðð4=3ÞpR3
gÞ; where x ¼

0.625cm3/g is the specific volume of dextran (46) and NA is Avogadro’s

number. The fluorescent tracers used in this study were streptavidin labeled

with Alexa Fluor 488 (52.8 kDa, Molecular Probes, Eugene, OR), enhanced

green fluorescent protein ((EGFP) 27 kDa, BD Biosciences Clontech, San

Jose, CA), fluorescein, and FITC-dextran (282 kDa, Sigma-Aldrich). All

molecules were used without further purification. They were dissolved at high

concentrations with stirring as needed. The tracer molecules were selected for

their absence of known interaction with the chosen obstacles and, except for

the dextran, for their perfect monodispersity. To characterize the size of

a tracer, its hydrodynamic radius RH can be calculated from its diffusion

coefficient using the Stokes-Einstein relation. The diffusion coefficients of

EGFP, streptavidin, and FITC-dextran in the aqueous buffer in the absence of

obstacles were measured by FCS and their hydrodynamic radii in the absence

of obstacles were found to be 3.3, 4.9, and 9.5 nm respectively. The

hydrodynamic radius of fluorescein can be estimated to be 0.8 nm from its

known diffusion coefficient D ¼ 260 mm2/s. The isoelectric point of

streptavidin is pI ¼ 6.3 (47), whereas that of EGFP is pI¼ 5.5 (48), meaning

that in the pH¼ 7.4 buffer used both proteins are negatively charged. The use

of charged proteins reduces the risks of aggregation, which are higher in

crowded solutions due to the presence of depletion interactions.

Fluorescence correlation spectroscopy

FCS is a method relying on the detection and temporal analysis of the

fluorescence signal emitted from a small confocal detection volume (49–52).

Our homebuilt FCS setup is based on an inverted Nikon Eclipse TE2000-U

microscope (Nikon, Tokyo, Japan). Fluorescence is excited by an argon ion

laser (Melles Griot, Carlsbad, CA) whose 488-nm wavelength is selected by

an excitation filter (HQ480/403, Chroma Technology, Brattleboro, VT).

The beam is focused in the sample by a water immersion objective (Plan

Apo 603, N.A. 1.20, Nikon). The output power of the laser is attenuated by

neutral density filters and polarizers to obtain a radiant exposure at the focus

in the range of 1–10 kW/cm2. The emitted fluorescence collected by the

objective passes through a dichroic mirror (Q505LP, Chroma), is filtered by

an emission filter (HQ535/50m, Chroma), and focused through either a 30-

or a 75-mm-diameter pinhole (Thorlabs, Newton, NJ) depending on the

diameter of the beam entering the objective. The signal is detected by

a photomultiplier (H7421, Hamamatsu Photonics, Shimokanzo, Japan) and

fed into a multi-tau correlator (Flex01–08 ns, Correlator.com, Bridgewater,

NJ) that computes its autocorrelation function. Autocorrelation functions

were typically recorded for durations of 2–3 min and the measurements

repeated 10–30 times for each sample. Analyses of the measured

autocorrelation functions were performed using the software KaleidaGraph

(Synergy Software, Reading, PA) that relies on the Levenberg-Marquardt

algorithm. The exact dimensions of the confocal detection volume were

evaluated before each experiment by fitting the autocorrelation function

obtained from the free diffusion of fluorescein in PBS assuming D ¼ 260

mm2/s (53). Typical values obtained for the 1/e2 half-width of the detection

volume were w0 ¼ 220 nm and w0 ¼ 350 nm for the two different pinhole

sizes used. Most of the measurements were done at room temperature, but

when necessary the temperature of the sample was controlled using both an

inverted Peltier stage heater (PE100-NI, Linkam Scientific, Surrey, UK) and

a custom-made Peltier objective heater (also from Linkam Scientific).

Analysis of the autocorrelation functions

Autocorrelation functions were analyzed using an expression modified to

account for the possibility of anomalous diffusion. In this case, because the

mean-square displacement follows a power law, Ær(t)2æ ; ta, the expression

of the autocorrelation function can be expected to be (54):

GðtÞ ¼ 1=N

11
t

tD

� �a� �
11

1

S
2

t

tD

� �a� �1=2 � 11
T

1�T
� e

t
tT

� �
:

(4)

S is the aspect ratio, height to width, of the ellipsoidal detection volume.

N is the average number of fluorophores and tD their characteristic residence

time in this volume; tD is related to the apparent diffusion coefficient D of

the fluorophores and to the half-width w0 of the detection volume:

tD ¼ w2

0

4D
: (5)

The second term in Eq. 4 accounts for the existence of a nonfluorescent

triplet state (55): tT is the relaxation time of the triplet state, and T is the average

fraction of fluorophores found in the triplet state. The simple analytical equation

given in Eq. 4 was derived using one of several possible diffusion equations

leading to anomalous diffusion, and hence is not necessarily an exact solution

for all cases of anomalous transport. However, it has been shown to be a very

good approximation of the more complex solution of a larger class of

anomalous diffusion equations (27). Importantly, the asymptotic behavior of the

autocorrelation function depends only on the probability of a particle to return to

the origin, which is independent of the anomalous diffusion model used (56).

Both the triplet state relaxation time, tT, and the aspect ratio, S, were fixed in the

fitting process for all the samples containing obstacles. The value of these two

parameters was determined by fitting autocorrelation functions measured for the

diffusion of the tracer in an aqueous solution immediately before performing the

experiments in the presence of molecular crowding. In the case of EGFP, tT is

the decay time of the fast protonation process that causes fluorophore blinking,

whereas the blinking due to the slow protonation process is not expected to

occur at the pH used in this study (32). Indeed, Eq. 4 with x ¼ 1 fits the

autocorrelation data well for diffusion of EGFP in PBS without obstacles.

In the case where a ¼ 1, diffusion is simple and the diffusion coefficient

D calculated from the measured value of tD using Eq. 5 is a constant, as

defined in Eq. 1. On the other hand, when a 6¼ 1 diffusion is anomalous and

the diffusion coefficientD calculated using Eq. 5 is just an apparent diffusion

coefficient, describing diffusion at the length scale w0 set by the experiment,

or equivalently at the timescale tD. As defined in Eqs. 2 and 3, the apparent

diffusion coefficient is:

DðtDÞ ¼ G t
a�1

D : (6)

Multicomponent models are often used to explain deviations from simple

diffusion. The corresponding expression of the diffusion term of the

autocorrelation function for such models is:

GðtÞ ¼ +
n

i¼1

ai

11
t

tDi

� �
11

1

S
2

t

tDi

� �� �1=2; (7)

TABLE 1 Characteristics of the dextrans used as obstacles

Mp (kDa) Mn (kDa) Mw(kDa) Mw/Mn Rg (nm) f*

1.1 1.0 1.3 1.26 0.82 0.49

4.4 3.3 5.2 1.60 1.7 0.22

9.9 8.1 11.6 1.43 2.6 0.14

43.5 35.6 48.6 1.37 5.8 0.055

276.5 236.3 409.8 1.73 17 0.014

401.3 332.8 667.8 2.01 22 0.009

Mp, Mn, Mw are the peak value, number average, and weight average of the

molecular mass, respectively. Mw/Mn is the polydispersity index. Rg is the

radius of gyration and f* is the overlap volume fraction in aqueous

solution, approximated as explained in the text.
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where ai is the contribution of the ith component to the total amplitude of the

autocorrelation function, G(0), and tDi is the characteristic residence time of

this component. To assess the validity of using an anomalous diffusion

model as opposed to a multiple-component model, the autocorrelation func-

tions were analyzed both using a two-component model (Eq. 7 with n ¼ 2),

where it is assumed that two different fluorescent species are diffusing

normally in solution (29), and using a maximum entropy method adapted for

FCS (MEMFCS), where it is assumed that a large number of different

fluorescent species are diffusing normally in solution (Eq. 7 with n ¼ 100),

each with a different diffusion coefficient (57,58). We used the MEMFCS

algorithm recently made available by Sengupta and colleagues (57) based on

the maximum entropy method of Skilling and Bryan (59). Like other fitting

algorithms, MEMFCS seeks to minimize the chi-square parameter x2

describing the distribution of the residuals, but MEM algorithms also seek to

maximize an entropy-like quantity, S ¼ �+
i
pi ln pi; where pi ¼ ai=+j

aj
for FCS. Maximizing entropy results in the maximally wide distribution of

tDi values that is consistent with the data.

Autocorrelation data showing obvious signs of the passage of large

fluorescent aggregates through the detection volume during the measure-

ment, both by erratic deviations from a smooth decay in the 0.1–10-s time

range and the presence of spikes in the photon count history recorded by the

correlator at a resolution of 67 ms were rejected. In contrast to the discarded

measurements showing evidence of aggregation, the measurements retained

for analysis were highly reproducible and independent from protein

preparation. The occurrence of aggregates varied considerably from one

protein batch to the next, implying that aggregation is not an intrinsic

property of the system, but suggesting instead that aggregates are formed

around impurities. The number of aggregation occurrences became more

frequent at very high concentrations of high molecular weight dextrans, and

up to two-thirds of the curves had to be rejected. However, ultracentrifu-

gation of our samples up to 200,0003 g using a Beckman TL-100 Tabletop

Ultracentrifuge (Beckman Coulter, Fullerton, CA) greatly reduced the

frequency of the aggregation occurrences. But the anomalous diffusion

exponent and the diffusion coefficient measured did not change after

ultracentrifugation.

RESULTS

Two different types of diffusion behavior were obtained

depending on the presence or absence of obstacles in the

buffer, as illustrated by the autocorrelation curves presented

in Fig. 1. In samples containing only very low concentrations

of solutes, the resultant diffusion cannot be distinguished

from simple diffusion. The simple diffusion model for a

single species in solution (Eq. 4 with a ¼ 1) is very

successful in fitting the correlation data for such systems.

However, in crowded solutions, this simple equation no

longer fits the data. The autocorrelation data show a broad-

ening in the decay at timescales corresponding to diffusion

(Fig. 1), indicating a wider distribution of diffusion times of

the tracer through the detection volume.

Two models frequently used to model the diffusion of

tracers in living cells are the two-component model (Eq. 7

with n ¼ 2) and the anomalous diffusion model (Eq. 4), as

described in Materials and Methods. For the crowded

solution, the fit obtained using the anomalous diffusion

model is shown in Fig. 1 a, whereas Fig. 1 b compares the

residuals of the fits for both models, showing that the anom-

alous diffusion model gives a slightly better match. Another

way to distinguish between these two models is to examine

the long-time behavior of the autocorrelation data. Although

multi-tau correlators may introduce errors at long times for

oscillatory signals (60), the signal considered here is not

oscillatory, and thus the long-time behavior of the correlation

data should be reliable. At timescales above the characteristic

average residence time, the autocorrelation function of

multicomponent models scales as t�3=2 (Eq. 7), whereas in

the anomalous diffusion model, the autocorrelation function

scales as t�3a=2 (Eq. 4). As shown in Fig. 1 c, the asymptotic

behavior of the autocorrelation function corresponding to the

diffusion of streptavidin in the absence of dextran obstacles

is identical to that predicted by the simple diffusion model.

But when dextran obstacles are present, it clearly deviates

from the t�3=2 scaling predicted by multicomponent models.

On the contrary, in the latter case, it is well described by the

t�3a=2 scaling predicted by the anomalous model. Finally, the

fact that the same exponent a ¼ 0.76 describes equally well

short-time behavior around tD and the asymptotic behavior

above tD indicates that the diffusion may be consistently

anomalous over a large time range.

We used the MEMFCS fitting algorithm to further test the

agreements of the two models with the experimental data,

and to validate the use of the anomalous diffusion model to

analyze our data. Fig. 2 shows the effective distributions in

average residence times calculated using the MEMFCS

software that correspond to the autocorrelation data shown in

Fig. 1 a. Although diffusion in the absence of obstacles yields
a narrow distribution, as expected (57), diffusion in the pres-

ence of obstacles produces a wide distribution with a distinct

tail at long times. Such a distribution is not compatible with

a two-component model. Indeed, if we apply the MEMFCS

algorithm to simulated autocorrelation data generated using

the equation for the two-component model (Eq. 7 with n ¼ 2

where the parameters were obtained by fitting the experimen-

tal data shown in Fig. 1), then we find a distribution with two

narrow peaks centered around the characteristic residence time

of the two species (cf. Fig. 2). The presence of two clearly

separated peaks is not due to the use of simulated auto-

correlation data. The maximum entropy method has been

shown to be able to separate the contributions of two different

species in different real two-component samples (58,61). The

failure of the two-component model to predict the correct

distribution of residence times proves that the complex

behavior of the systems under study cannot be reduced to coex-

istence of two distinct tracer populations.

In contrast, if the MEMFCS algorithm is applied to

simulated autocorrelation data generated using the anoma-

lous diffusion model, then we find a wide and asymmetric

distribution of residence times nearly identical to the dis-

tribution obtained from the experimental data (cf. Fig. 2).

The experimental distribution is in good agreement with

a subdiffusive behavior of the fluorescent tracer particles,

and we found this agreement to hold for all concentrations of

obstacles. A wide distribution of diffusion times is expected

in the case of anomalous diffusion, as shown by applying the
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maximum entropy method to simulated fluorescence re-

covery after photobleaching experiments (53). Also, long-

tail kinetics, which will result in an asymmetric distribution

of diffusion times, were predicted as a result of anomalous

diffusion (62). The MEMFCS analysis does not distinguish

between a single component diffusing anomalously and

a continuous distribution of components diffusing normally

having coincidentally the same distribution of residence

times. However, if the diffusion in our samples were not

actually anomalous, then the distribution produced by the

MEMFCS algorithm from the experimental data could have

been incompatible with anomalous diffusion. But because

the distributions do agree, even if the diffusion is not in fact

anomalous, we can characterize the experimental distribution

using only the two parametersD(tD) and a extracted from the

anomalous diffusion model, which determine the center and

the width of the distribution. For the above reasons, we dis-

cuss our results using the anomalous diffusion model through-

out the rest of this article.

The apparent diffusion coefficient D(tD) obtained using

the anomalous diffusion model for streptavidin in the

presence of various concentrations of dextrans of different

molecular weight is shown in Fig. 3 a. For streptavidin,

D(tD) is found to decrease with increasing concentration of

FIGURE 2 Effective distributions in average residence times calculated

with the MEMFCS algorithm for the experimental autocorrelation data

shown in Fig. 1 a (symbols), and for two sets of simulated autocorrelation

data corresponding to the case of streptavidin diffusing in 200 g/l 276 kDa

dextran. The first set was generated using the anomalous diffusion model

and the parameters found from the fit of the experimental data (a ¼ 0.76,

tD ¼ 1.6 ms) and the second set was generated using the two-component

model and the parameters found from the fit of the experimental data (tD1 ¼
0.90 ms, tD2 ¼ 12 ms, relative amplitude a2/a1 ¼ 0.41), as explained in the

text. The peak values of the distributions found by the MEMFCS algorithm

for the two-component model are 0.94 and 13 ms.

FIGURE 1 Normalized autocorrelation functions for streptavidin diffus-

ing in PBS buffer with and without dextran obstacles (200 g/l of 276.5 kDa

dextran). The fit of these autocorrelation functions using the anomalous

diffusion model (Eq. 4) gives a ¼ 0.99 6 0.01 for no obstacles, and a ¼
0.766 0.01 with obstacles (solid lines). The failure of the fit with the simple

diffusion model (Eq. 4 with a ¼ 1) for the case with obstacles is also shown

(dashed line). The fit with the two-component model (Eq. 7) closely

resembles the fit with the anomalous diffusion model and is not shown for

clarity of the plot. (b) Residuals of the fits of the autocorrelation function in

panel a for the case with dextran obstacles with both the anomalous diffusion

model (dots, x2 ¼ 0.0024 for 459 data points from t ¼ 0.5 ms to 1 s, with

three adjustable parameters) and the two-component model (solid line, x2 ¼
0.0028 for the same data points with four adjustable parameters) are shown

for the timescale relevant to diffusion. At shorter timescales, the two models

are practically identical and the scatter in the data is large. (c) Asymptotic

long-time behavior of the data and fits to the autocorrelation functions

shown in panel a. For the case without dextran obstacles, the fit with the

anomalous diffusion model shows a t�3=2 scaling (solid line). For the case

with obstacles, the fit with the anomalous diffusion model shows a t�3a=2

scaling (solid line, a¼ 0.76), whereas the fit with the two-component model

shows a t�3=2 scaling (dashed line).
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dextran as predicted by all models describing the diffusion of

spherical tracer particles in the presence of macromolecular

crowding (8,13,19) and as previously observed in similar

systems (63). Our data in Fig. 3 a can be satisfactorily fitted

by a stretched exponential:

D

D0

¼ e
�bf

n

; (8)

where D0 is the diffusion coefficient of the tracer particle in

aqueous solution, f is the polymer volume fraction, and b

and n are scaling parameters. Equation 8 corresponds to the

prediction made by several models describing the diffusion

of globular tracer particles in polymer solutions. All these

models rely to some extent on phenomenological arguments,

and the physical significance of the coefficients b and n is

not well defined (8). Some models predict different constant

values for n (64), whereas Phillies’ model predicts a de-

pendence on molecular weight (65). In our case we observe

no clear trend in b as a function of the polymer molecular

weight, and find that n drops from 1.35 to 0.85 as the

polymer molecular weight increases (cf. Fig. 3 b).

However, the novel and surprising result of our study is

that the diffusion of streptavidin is anomalous in the presence

of dextran. The data in Fig. 4 a show two trends with respect

to the anomalous exponent. First, a drops with increasing

dextran concentration until it reaches a limit value al � 0.74

for the large molecular weight dextrans. In the cases of the

smaller dextran obstacles, only the decay regime is observ-

able. Second, the initial decay of the anomalous exponent

becomes steeper with increasing molecular weight of the

obstacles. The fits indicated in Fig. 4 a have been made

assuming an asymptotic exponential decay to a limit value al

common for all dextrans:

a ¼ al 1 ð1� alÞe�f=f0 ; (9)

where al was estimated first by fitting the curves in Fig. 3

a for the three highest molecular weight dextrans allowing al

to vary. We found al ¼ 0.74 6 0.02. Then all curves were

fitted using this limit value. The origin and value of al are

discussed below. Fig. 4 b shows the value of f0 as a function

of the polymer molecular weight.

FIGURE 3 (a) Apparent diffusion coefficient, D(tD), associated with the

diffusion of streptavidin as a function of dextran concentration for dextrans

of various average molecular weights (open and solid symbols). Also shown
is D(tD) for a 282 kDa dextran diffusing in a solution crowded by a 401.3

kDa dextran (half-solid symbols). Lines represent stretched exponential fits

as explained in the text. Where necessary, some of the data points have been

slightly shifted horizontally for clarity of the plot. (b) Value of the exponent
n as a function of the molecular weight of the polymers used as obstacle. The

dotted line is a guide for the eyes.

FIGURE 4 (a) Anomalous diffusion exponent associated with the

diffusion of streptavidin as a function of obstacle concentration for dextrans

of various average molecular weights. Lines are fits to the data using Eq. 10

with al ¼ 0.74. Where necessary, some of the data points have been slightly

shifted horizontally for clarity of the plots. (b) Crossover volume fraction

f0 found as a result of the fit shown in panel a for the different dextrans used

as obstacles. The solid line shows the overlap volume fraction f* calculated

as explained in Materials and Methods.
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To test for an effect of the negative charge of streptavidin

on the diffusion, we modified the ionic strength of the buffer

solution by increasing the NaCl concentration in our samples

to screen the interactions due to the charges on the streptavidin.

As shown in Fig. 5, adding up to 1 M NaCl to the PBS buffer

has no effect on the anomalous diffusion exponent a, with or

without dextran crowding. Above a 1-M concentration of

salt in the sample containing 200 g/l of the 276 kDa dextran,

there is an increase in the rate of aggregation as evidenced by

spikes in the photon count history and corresponding corre-

lations at long times. This is due to the well-known salting

out effect: proteins start aggregating upon screening of their

electrostatic charges. As expected, aggregation is enhanced

by the presence of the dextran, which induces attractive de-

pletion interactions between the proteins. In the control

samples not containing dextran, the presence of aggregates

was not detected even at the highest salt concentrations used

(5 M). For the samples containing dextran, the error introduced

by the presence of aggregates reduces the measured value of

a as shown above 1 M salt. And above 2 M, the aggregations

become too frequent to admit a fit of the data with the anom-

alous diffusion model. We also observed that the apparent

diffusion coefficient is independent of ionic strength (data

not shown).

We tested for a temperature dependence of the subdiffu-

sive behavior within a biologically relevant range, from 15 to

45�C. The experiment was done for streptavidin diffusing in

samples containing either 75 g/l or 200 g/l of the 276 kDa

dextran. Results are shown in Fig. 6. Although the apparent

diffusion coefficient increases with increasing temperatures

as expected from the change in the buffer viscosity, the

anomalous exponent a is remarkably constant in both cases,

showing that temperature changes in this temperature window

do not strongly affect the anomalous nature of the diffusion.

To assess whether the anomalous behavior would depend

on the nature of the tracers used, we repeated this experiment

with different tracers. As shown in Fig. 7, the diffusion of the

other globular protein used as a tracer, EGFP, is anomalous

to a degree comparable to that of streptavidin. On the other

hand, for fluorescein, the diffusion is normal within experi-

mental errors. For the large dextran tested, the diffusion is

also observed to be normal or only slightly anomalous, sug-

gesting that the rules governing the self-diffusion of the poly-

mer obstacles are quite different from those governing the

diffusion of the globular tracers.

Finally, to check whether the effect we observe in random-

coil polymer solutions is in fact relevant to the diffusion of

proteins in the cytoplasm of cells, where molecular crowding

FIGURE 5 Anomalous diffusion exponent corresponding to the diffusion

of streptavidin in PBS with and without 200 g/l of 276 kDa dextran, as

a function of added NaCl.

FIGURE 6 Anomalous diffusion exponent a associated with the diffusion

of streptavidin in presence of 75 g/l and 200 g/l of 276 kDa dextran as

a function of the temperature. The average values of the anomalous diffusion

exponent a over the considered temperature range are shown: a ¼ 0.86 6

0.01 and 0.75 6 0.01. The inset shows the corresponding variation of the

apparent diffusion coefficientD(tD) in mm
2/s, and the lines are fits assuming

that the temperature dependence is only due to the change in the viscosity of

water.

FIGURE 7 Anomalous diffusion exponent as a function of dextran

concentration fitted to Eq. 10 for various tracers: EGFP and streptavidin in

solutions crowded with the 276.5 kDa dextran, and fluorescein and 282 kDa

FITC-dextran in solutions crowded with 401.3 kDa dextrans. Where

necessary, some of the data points have been slightly shifted horizontally for

clarity of the plots.
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is mainly due to high protein concentrations, we used other

proteins as obstacles. We investigated the diffusion of stre-

ptavidin against very high concentrations of bovine serum

albumin, a globular protein of comparable molecular weight,

and against high concentrations of unlabeled streptavidin.

Results are shown in Fig. 8. At a 350 g/l concentration of

BSA, the exponent a corresponding to the diffusion of

streptavidin is 0.91 6 0.02. Thus, the subdiffusive behavior

is considerably weaker than that observed in the case of the

large dextrans, but comparable to that obtained in the case

of the smaller dextrans. In the case where streptavidin (not

fluorescently labeled) was used as an obstacle, behavior

more anomalous than in the case of BSA was observed up to

;130 g/l. However, comparison could not be made at higher

concentrations due to the lower solubility of streptavidin

in PBS. The observation that streptavidin can cause the

subdiffusion of labeled streptavidin molecules is neverthe-

less significant, because it indicates that anomalous diffusion

can occur in these systems in the absence of depletion inter-

actions.

DISCUSSION

Anomalous diffusion has been previously observed and ex-

plained in a variety of nonbiological systems (56). Sub-

diffusion is expected either in the presence of a high

concentration of fixed obstacles or in the presence of

a distribution of binding sites, as was shown by Monte Carlo

simulations of random walks (25,66,67). In fractal systems,

the value of a depends on the type of fractal. For site

percolation at the percolation threshold, numerical methods

show that a ¼ 0.53 in 3-D (22). Experimentally, sub-

diffusion has been unambiguously observed in cross-linked

polymer networks where the centers-of-mass of the obstacles

are fixed (68–71). The variety of anomalous exponents

measured in these networks were explained by the existence

of different effects in addition to the excluded volume effects

considered in the simulations: coupling of the tracer motion

with the fluctuations of the network filaments (69), trapping

(70), and interactions with the obstacles (71).

But in the experiments presented here, the obstacles caus-

ing the anomalous diffusion are mobile, and have a mobility

comparable to that of the tracer proteins (cf. Fig. 3 for the

diffusion of the 282 kDa dextran). This is an unexpected

result because for diffusing point obstacles interacting with

a point tracer through excluded volume effects, simulations

either do not show anomalous diffusion (25), or they show

anomalous diffusion only at very short timescales (72). Fur-

thermore, some groups have measured the diffusion of

tracers in solutions crowded with mobile random-coiled

polymers or globular proteins without observing or reporting

this diffusion to be anomalous (73–77). However, our ex-

periments and analysis show very clearly otherwise. One

reason for this apparent discrepancy is that subdiffusion does

not seem to appear or is very weak, as we show here, for

small tracer particles such as fluorescein or for random-coil

polymer tracers such as dextran, and most studies to date

have been concentrating on the behavior of such tracers

(74,76). Other studies have been restricted to low polymer

concentrations (77), where the effect is slight and can easily

be missed, because it can be incorrectly attributed to the

artifacts mentioned in the introduction. In support of our

observation that diffusion of tracer particles is anomalous in

polymer solutions, it has very recently been shown using

scale-dependent FCS measurements that the diffusion of

dyes in polymer solutions was slightly anomalous (78).

Furthermore, it was reported several times that the measured

diffusion coefficients of proteins point to a difference be-

tween macroscopic and microscopic viscosities (10,73,77),

whichmay result in anomalous diffusion at intermediate length

scales for these proteins.

Although it is clear that the deviation from normal

diffusion behavior has to arise from the heterogeneous nature

of the solution and interactions between the tracer particle

and the obstacles, the nature of these interactions and the

mechanism by which they cause anomalous diffusion need

to be resolved. The possibility that the distribution of res-

idence times observed in crowded media (Fig. 2) reflects the

presence of inhomogeneities due to depletion interactions

cannot be entirely ruled out. However, several pieces of

evidence speak against this scenario. First, when aggregates

are removed by ultracentrifugation, the anomalous behavior

observed does not change. Second, if inhomogeneities

present in our samples were due to depletion interactions,

we would expect them to grow larger upon screening of the

negative charges of the tracer proteins. But when adding

NaCl in the solution, there are no observable changes until

;1.5 M NaCl, when we start detecting signs of aggregation

as a stable phenomenon. This suggests that for solutions with

no added NaCl, aggregation is a relatively rare occurrence.

FIGURE 8 Anomalous diffusion exponents associated with the diffusion

of streptavidin in solutions crowded with either BSA or nonfluorescent

streptavidin for different concentrations of the obstacle proteins fitted to Eq.

10. For comparison, the exponent associated with diffusion in a solution

crowded with a 4.44 kDa is also indicated.
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Third, in homogeneous streptavidin solutions where de-

pletion interactions disappear, we still observe that the

diffusion of fluorescent streptavidin is anomalous, to a degree

comparable to that of its diffusion in small dextrans. In

addition to these observations, the lack of visible temperature

dependence for the anomalous behavior speaks against

depletion interactions being the single cause for subdiffu-

sion. In fact, it speaks against all possible models in which

entropy effects cause the anomalous behavior, as entropy

driven interactions will be sensitive to temperature changes.

Another potential cause for the anomalous diffusion is the

polydispersity of the obstacles. Indeed, it may be noted that

the polydispersity index (PI) of the dextrans used in our

experiments roughly correlates with their molecular weight,

as can be seen in Table 1, and so the observed dependence of

a on molecular weight could in fact be a dependence on PI.

However, whereas the PI may play a role in determining the

value of a, the key variable is certainly the molecular weight.

Indeed, when we mix two dextran samples of same con-

centration but unequal average polymer weights to obtain

a sample of increased PI but lower average molecular weight

as compared to the highest molecular weight sample, the

anomalous diffusion exponent a increases (data not shown).

Also, diffusion is still anomalous when the solution is

crowded with strictly monodisperse obstacles such as BSA

or streptavidin.

We hypothesize that the subdiffusion process we observe

may be separated into two different regimes, which cor-

respond to two different anomalous diffusion mechanisms.

These two different regimes are visible in Fig. 4 a, where the
anomalous exponent a depends strongly on obstacle con-

centration below the crossover volume fraction f0 whereas it

is constant above f0. The first regime corresponds to solutions

containing globular proteins, low molecular weight dextrans,

or high molecular weight dextrans at low concentration. The

second regime corresponds to solutions containing high mo-

lecular weight dextrans at high concentrations. The crossover

volume fraction f0 is found to be slightly above the chain

overlap volume fraction f* for all dextrans (cf. Fig. 4 b).
In the first regime, our samples may be compared to

colloidal systems, picturing both the tracers and obstacles as

spheres. These systems are similar in that in both cases the

tracers and obstacles are globular, comparable in size, and

interact mainly through excluded volume or hydrodynamic

interactions. Also, both systems are glass-forming solutions.

Single particle tracking experiments in colloidal systems

showed that anomalous diffusion could be attributed un-

ambiguously to caging effects (79,80). The diffusion be-

haves according to the prediction of the two-phase model,

where diffusion is anomalous only at timescales where both

rattling within a cage and hopping out of a cage significantly

contribute to displacement. Observations in our systems are

compatible with transient caging of the tracer proteins by an

ensemble of random-coil polymer molecules or globular

proteins. First, neither dextran molecules that can move by

means of reptation nor small fluorescein molecules are likely

to be caged. Second, because larger polymers will move

slower, they will tend to trap the tracer molecules for a longer

time, causing the diffusion to be more anomalous. Third,

compared to the case of globular proteins obstacles, anom-

alous diffusion is more pronounced in the case of random-coil

polymer obstacles, because their more extended conforma-

tions increase the possibility of complex steric interactions

and hence the probability of caging globular tracers. The

smaller range of anomalous exponents we observe in this

regime a� 0.9–1 compared to those reported in the mentioned

colloidal systems a � 0.1–1 (81) could be attributed to the

fact that our systems are farther away from the glass tran-

sition, which can be estimated using the Fox equation (82) to

be above fg¼ 0.4 for dextrans in water at room temperature.

Alternatively, one could argue that, in this low concentration

regime, transient inhomogeneities due to depletion inter-

actions are the cause of the anomalous behavior we observe

because they could act as traps for the tracer proteins. The

tracers may associate with and dissociate from these inho-

mogeneities while diffusing through the detection volume,

which may result in an anomalous diffusion behavior similar

to that predicted by caging models, or by models where

tracers are allowed to bind to obstacles (66).

In the second regime, which occurs well above the chain

overlap volume fraction f*, that is, at a volume fraction

where the polymer chains are entangled, we observe

a constant value of the anomalous exponent al ¼ 0.74 6

0.02. This value is reminiscent of the exponent a ¼ 3/4

measured for the diffusion of beads in cross-linked polymer

networks when the tracer diameter is larger than the network

mesh size in agarose gels (68) and in actin networks (69).

The same behavior (a ¼ 3/4) has been observed for the

diffusion of lipid granules in the cell cytoplasm (83), and

recently for the diffusion of dextran in the cytoplasm of

HeLa cells (27). In the case of the cross-linked networks, this

result has been explained by a strong coupling between the

diffusing beads and the thermal motions of the actin

filaments, because the lateral mean-square displacement of

the monomers of polymer filaments scales as t3/4 at short

times (69). In our system at high dextran concentration, the

polymer chains form an entangled, but not cross-linked,

network. The center-of-mass diffusion of the polymer is slow

compared to the thermal fluctuations of the monomers such

that we can expect the coupling between the tracer proteins

and the segments of the chains to become the predominant

relaxation mechanism for the tracers, resulting in a

subdiffusion characterized by a ¼ 3/4, which is what we

observe. Once the polymer chains are well entangled, the

average mesh size of the network does not depend on the

polymer molecular weight (84), so that the characteristics of

the motion of tracer particles should not depend on it either.

This is in agreement with our observations: well above f*,

neither the apparent diffusion coefficient nor the anomalous

exponent a depend on the molecular weight of the dextrans.
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CONCLUSION

This study is the first report of unequivocal observations of

anomalous diffusion of proteins in solutions crowded by

mobile obstacles. Our results suggest that the failure of

models of diffusion in random-coil polymer solutions to

predict experimental observation, which becomes apparent

at high concentrations, is due at least in part to the fact that

none of these models allow for anomalous diffusion. Not

only in random-coil polymer solutions, but also in cells,

experimental measurements of protein diffusion, and models

of processes that depend on diffusion should be done con-

sidering the possibility of anomalous diffusion. The cytoplasm

may be pictured as a cytoskeleton filament network with a

characteristic mesh size j � 20–30 nm (37,38) filled with an

aqueous phase containing a very high concentration of pro-

teins, up to 400 g/l (85,86). Because this network mesh size

is too large to produce anomalous diffusion for typical-sized

proteins, we expect that the slight anomalous diffusion

observed in the cytoplasm (28,29) may be due to the cage

rearrangement effect or to binding interactions. Indeed, it

was shown that anomalous diffusion of dextrans in cell did

not disappear after depolymerization of the microtubule

network (27). The fact that diffusion should generally be

expected to be anomalous in the cytoplasm, even if the effect

is small, is significant because it means that diffusion coef-

ficients measured at larger scales will lead to an under-

estimation of the mobility of the proteins at molecular scales.

In addition, even a slightly anomalous behavior might influ-

ence the outcome of such processes as pattern formation,

whose stability has sometimes been linked to subdiffusion of

the reactants (87). Also, our study of diffusion of proteins at

high random-coil polymer concentration reproduces con-

ditions found in living systems: in bacterial films (88), in the

periplasmic peptidoglycan network of Gram-negative bac-

teria, in the hyaluronic acid coat enveloping some eukaryotic

cells (89), and in the chromatin in places where DNA is not

wrapped around structural proteins. Indeed, the anomalous

behavior observed in cell nuclei for EGFP (29) is consistent

with a motion coupled with the thermal fluctuations of

filaments (a approaches 3/4). Although the cellular environ-

ment is more complex than our simplified model systems,

understanding diffusion in these systems will facilitate the

use of probe diffusion to meaningfully characterize the

cellular environment at the scale of biomolecules.
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